login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183534
Square array of generalized Ulam numbers U(n,k), n>=1, k>=2, read by antidiagonals: U(n,k) = n if n<=k; for n>k, U(n,k) = least number > U(n-1,k) which is a unique sum of k distinct terms U(i,k) with i<n.
10
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 6, 6, 1, 2, 3, 4, 9, 8, 1, 2, 3, 4, 10, 10, 11, 1, 2, 3, 4, 5, 16, 11, 13, 1, 2, 3, 4, 5, 15, 17, 12, 16, 1, 2, 3, 4, 5, 6, 25, 18, 28, 18, 1, 2, 3, 4, 5, 6, 21, 26, 19, 29, 26, 1, 2, 3, 4, 5, 6, 7, 36, 27, 22, 30, 28, 1, 2, 3, 4, 5, 6, 7, 28, 37, 28, 64, 53, 36
OFFSET
1,3
COMMENTS
The columns are Ulam-type sequences - see A002858 for further information. Some of these sequences - but not all - seem to have quite simple generating functions.
U(k+1,k) = k*(k+1)/2.
U(k+2+j,k) = k^2+j for k>=3 and 0<=j<k.
U(2*k+2,k) = k*(3*k-1)/2 for k>=3.
EXAMPLE
Square array U(n,k) begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
3, 3, 3, 3, 3, 3, ...
4, 6, 4, 4, 4, 4, ...
6, 9, 10, 5, 5, 5, ...
8, 10, 16, 15, 6, 6, ...
MAPLE
b:= proc(n, i, k, h) option remember;
local t;
if n<0 or h<0 then 0
elif n=0 then `if`(h=0, 1, 0)
elif i=0 or h=0 then 0
elif h=1 then t:= v(n, k);
`if`(t>0 and t<=i, 1, 0)
else t:= b(n -U(i, k), i-1, k, h-1);
t+ `if`(t>1, 0, b(n, i-1, k, h))
fi
end:
v:= proc() 0 end:
U:= proc(n, k) option remember;
local m;
if n<=k then v(n, k):= n
else for m from U(n-1, k)+1
while b(m, n-1, k, k)<>1 do od;
v(m, k):= n; m
fi
end:
seq(seq(U(n, 2+d-n), n=1..d), d=1..12);
MATHEMATICA
b[n_, i_, k_, h_] := b[n, i, k, h] = Module[{t}, Which[n < 0 || h < 0, 0, n == 0, If[h == 0, 1, 0], i == 0 || h == 0, 0, h == 1, t = v[n, k]; If[t > 0 && t <= i, 1, 0], True, t = b[n-U[i, k], i-1, k, h-1]; t+If[t > 1, 0, b[n, i-1, k, h]] ] ]; v[_, _] = 0; U[n_, k_] := U[n, k] = Module[{m}, If[n <= k, v[n, k] = n, For[m = U[n-1, k]+1, b[m, n-1, k, k] != 1, m++]; v[m, k] = n; m] ]; Table[Table[U[n, 2+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)
PROG
(PARI)
Ulam(N, k=2, v=0)={ my( a=vector(k, i, i), c );
for( n=k, N-1, for( t=1+a[n], 9e9, c=0;
forvec(v=vector(k, i, [i, n]), sum(j=1, k, a[v[j]])==t & c++>1 & next(2), 2);
c|next; v&print1(t", "); a=concat(a, t); break;
)); a}
CROSSREFS
Cf. A135737.
Sequence in context: A195097 A329288 A181845 * A066040 A318806 A066019
KEYWORD
nonn,tabl,look
AUTHOR
STATUS
approved