OFFSET
1,1
COMMENTS
Column 5 of A183402
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..200
Robert Israel, Linear recurrence of order 81 for n>=83
Robert Israel, Maple-assisted derivation of recurrence
FORMULA
Linear recurrence of order 81 for n >= 83 (see links). - Robert Israel, Oct 25 2019
EXAMPLE
Some solutions with a(1,1)=0 for 4X5
..0..0..1..1..1....0..1..0..0..1....0..0..0..0..0....0..1..0..0..0
..1..1..0..0..0....0..1..1..0..1....1..1..1..1..1....0..1..0..1..1
..0..0..0..1..1....0..1..0..0..1....1..0..0..1..1....1..1..0..1..0
..1..1..1..1..0....0..1..1..1..1....1..0..0..0..0....0..0..0..1..0
MAPLE
Configs:= [seq(convert(n, base, 2)[1..10], n=2^10..2^11-1)]:
Compatible:= proc(i, j) local Xi, Xj, k;
Xi:= map(t -> 2*t-1, Configs[i]);
Xj:= map(t -> 2*t-1, Configs[j]);
if Xi[6..10] <> Xj[1..5] then return 0 fi;
if Xi[6] = signum(Xi[2]+Xj[7]) then return 0 fi;
for k from 7 to 9 do if Xi[k] = signum(Xi[k-6]+Xi[k-4]+Xj[k-1]+Xj[k+1]) then return 0 fi od;
if Xi[10] = signum(Xi[4]+Xj[9]) then return 0 fi;
1
end proc:
T:= Matrix(1024, 1024, Compatible):
uok:= proc(i) local a, k;
a:= map(t -> 2*t-1, Configs[i]);
if a[1]=a[7] then return 0 fi;
for k from 2 to 4 do if a[k] = signum(a[k+4]+a[k+6]) then return 0 fi od;
if a[5]=a[9] then return 0 fi;
1
end proc:
u:= Vector(1024, uok):
vok:= proc(i) local a, k;
a:= map(t -> 2*t-1, Configs[i]);
if a[6]=a[2] then return 0 fi;
for k from 7 to 9 do if a[k] = signum(a[k-4]+a[k-6]) then return 0 fi od;
if a[10]=a[4] then return 0 fi;
1
end proc:
v:= Vector(1024, vok):
Tv[0]:= v:
for nn from 1 to 30 do Tv[nn]:= T . Tv[nn-1] od:
[32, seq(u^%T . Tv[n], n=0..30)]/2: # Robert Israel, Oct 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2011
STATUS
approved