login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183382
Half the number of n X 3 binary arrays with no element equal to a strict majority of its king-move neighbors.
1
1, 5, 11, 29, 89, 245, 669, 1891, 5297, 14753, 41267, 115455, 322661, 902047, 2522301, 7051895, 19715891, 55124449, 154123101, 430912643, 1204794989, 3368504981, 9418046333, 26332052309, 73622187095, 205841375745, 575515014243
OFFSET
1,2
COMMENTS
Column 3 of A183386.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 6*a(n-3) - 13*a(n-4) + 3*a(n-5) - 2*a(n-6) + 6*a(n-7) + 4*a(n-8) + 5*a(n-9) - 4*a(n-10) - 2*a(n-11).
Empirical g.f.: x*(1 + 2*x - 2*x^2)*(1 - x - x^2 - x^3 - x^5 + 3*x^6 + x^7 + x^8) / (1 - 4*x + 4*x^2 - 6*x^3 + 13*x^4 - 3*x^5 + 2*x^6 - 6*x^7 - 4*x^8 - 5*x^9 + 4*x^10 + 2*x^11). - Colin Barker, Mar 28 2018
EXAMPLE
Some solutions for 5 X 3:
..0..0..1....0..1..0....0..0..1....0..1..0....0..1..1....0..1..0....0..1..0
..1..1..0....1..0..1....1..1..0....0..1..0....1..0..0....1..0..1....0..1..1
..0..1..0....0..1..0....0..0..1....1..1..0....0..1..1....1..0..1....1..0..0
..0..1..0....1..1..0....1..1..0....0..0..1....1..0..0....0..1..0....0..1..1
..0..1..0....0..0..1....0..0..1....1..1..0....0..1..1....0..1..0....1..0..0
CROSSREFS
Cf. A183386.
Sequence in context: A237642 A059508 A084817 * A100965 A001632 A234511
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2011
STATUS
approved