login
A182803
Number of 8-core partitions of n.
3
1, 1, 2, 3, 5, 7, 11, 15, 14, 22, 26, 32, 37, 45, 47, 56, 75, 77, 89, 102, 111, 124, 142, 147, 167, 182, 196, 210, 242, 249, 288, 322, 299, 349, 382, 393, 423, 467, 453, 499, 570, 563, 602, 669, 649, 716, 772, 754, 843, 907, 884
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{i>=1} (1-x^(8*i))^8/(1-x^i).
Euler transform of period 8 sequence [1,1,1,1,1,1,1,-7, .. ].
MAPLE
with(numtheory): A:= proc(n, t) option remember; local d, j; `if`(n=0, 1, add(add(`if`(t=0 or irem(d, t)=0, d-d*t, d), d=divisors(j)) *A(n-j, t), j=1..n)/n) end: seq(A(n, 8), n=0..50);
MATHEMATICA
A[n_, t_] := A[n, t] = If[n == 0, 1, Sum[Sum[If[t == 0 || Mod[d, t] == 0, d - d*t, d], {d, Divisors[j]}]*A[n - j, t], {j, 1, n}]/n];
Table[A[n, 8], {n, 0, 50}] (* Jean-François Alcover, May 21 2018, translated form Maple *)
CROSSREFS
8th column of A175595.
Sequence in context: A350836 A094252 A209038 * A106532 A240556 A090693
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 03 2010
STATUS
approved