OFFSET
0,5
EXAMPLE
Tetrahedron begins:
For i=0, j=1, k=0, T(0,1,0)=0 represents the first vertex of the tetrahedron.
For i=1, slice 1 lists the terms
1;
0, 1.
For i=2, slice 2 lists the terms
2;
2, 3;
0, 1, 2.
For i=3, slice 3 lists the terms
3;
4, 5;
3, 4, 5;
0, 1, 2, 3.
For i=4, slice 4 lists the terms
4;
6, 7;
6, 7, 8;
4, 5, 6, 7;
0, 1, 2, 3, 4.
For i=5, slice 5 lists the terms
5;
8, 9;
9, 10, 11;
8, 9, 10, 11;
5, 6, 7, 8, 9;
0, 1, 2, 3, 4, 5.
And so on.
If the sequence is written as a triangle, it begins:
0,
1, 0, 1,
2, 2, 3, 0, 1, 2,
3, 4, 5, 3, 4, 5, 0, 1, 2, 3,
4, 6, 7, 6, 7, 8, 4, 5, 6, 7, 0, 1, 2, 3, 4;
...
CROSSREFS
Cf. A144626.
Level j=1 column k=0 of tetrahedron = column 1 of triangle gives A001477.
Level j=2 column k=0 of tetrahedron = column 2 of triangle gives A005843.
Level j=2 column k=1 of tetrahedron = column 3 of triangle gives A005408.
Level j=3 column k=0 of tetrahedron = column 4 of triangle gives A008585.
Level j=3 column k=1 of tetrahedron = column 5 of triangle gives A016777.
Level j=3 column k=2 of tetrahedron = column 6 of triangle gives A016789.
And so on.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Dec 06 2010
STATUS
approved