login
A182412
Triangle T(n,k), read by rows, given by (1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
0
1, 1, 1, 3, 6, 3, 5, 17, 19, 7, 11, 48, 80, 60, 17, 21, 119, 270, 308, 177, 41, 43, 290, 823, 1256, 1087, 506, 99, 85, 677, 2321, 4447, 5147, 3601, 1411, 239, 171, 1556, 6234, 14360, 20806, 19424, 11416, 3864, 577
OFFSET
0,4
COMMENTS
Antidiagonal sums are in A077995.
FORMULA
G.f.: (1-y*x)/(1-(1+2*y)*x-(2+3*y+y^2)*x^2)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k) + 3*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = T(2,2) = 3, T(2,1) = 6 and T(n,k) = 0 if k<0 or if k>n.
T(n,n) = A001333(n), T(n,0) = A001045(n+1).
Sum_{k, 0<=k<=n} T(n,k)*(-1)^k = A000007(n).
EXAMPLE
Triangle begins
1
1, 1
3, 6, 3
5, 17, 19, 7
11, 48, 80, 60, 17
21, 119, 270, 308, 177, 41
43, 290, 823, 1256, 1087, 506, 99
85, 677, 2321, 4447, 5147, 3601, 1411, 239
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Apr 27 2012
STATUS
approved