login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182217
Primes p = prime(n) such that there is k>0 for which prime(n+k) = prime(n) + 4^(k-1).
1
2, 3, 43, 73, 151, 157, 163, 181, 277, 337, 367, 373, 433, 487, 601, 631, 643, 727, 757, 811, 823, 937, 967, 1093, 1213, 1471, 1483, 1543, 1567, 1693, 1873, 2083, 2137, 2281, 2341, 2383, 2647, 2671, 2953, 3307, 3313, 3517, 3607, 3847, 4003, 4441, 4447
OFFSET
1,1
EXAMPLE
2=prime(1+1)-4^(1-1)=3-1, 3=prime(2+2)-4^(2-1)=7-4, 43=prime(14+3)-4^(3-1)=59-16, 73=prime(21+3)-4^(3-1)=89-16.
PROG
(PARI) is_A182217(p)={isprime(p) || return; my(q=p); for(k=0, 9, p+4^k==(q=nextprime(q+1)) & return(1))} \\ M. F. Hasler, May 20 2012
(PARI) for(n=1, 9999, for(k=1, 9, prime(n+k)-prime(n)==4^(k-1)&!print1(prime(n)", ")&break)) \\ M. F. Hasler, May 20 2012
CROSSREFS
Cf. A001223.
Sequence in context: A237414 A051099 A162712 * A233314 A062581 A077520
KEYWORD
nonn
AUTHOR
Gerasimov Sergey, Apr 19 2012
STATUS
approved