login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n is odd, a(n) = (n+1)/2; if n is even, a(n) = a(n/2) + A003602(n).
7

%I #45 Jul 12 2022 09:50:04

%S 1,2,2,3,3,4,4,4,5,6,6,6,7,8,8,5,9,10,10,9,11,12,12,8,13,14,14,12,15,

%T 16,16,6,17,18,18,15,19,20,20,12,21,22,22,18,23,24,24,10,25,26,26,21,

%U 27,28,28,16,29,30,30,24,31,32,32,7,33,34,34,27,35,36

%N If n is odd, a(n) = (n+1)/2; if n is even, a(n) = a(n/2) + A003602(n).

%C The original definition was "Interleaved multiples of the positive integers".

%C This sequence is A_1 where A_k = Interleave(k*counting,A_(k+1)).

%C Show your friends the first 15 terms and see if they can guess term number 16. (If you want to be fair, you might want to show them A003602 first.) - _David Spies_, Sep 17 2012

%H Antti Karttunen, <a href="/A181988/b181988.txt">Table of n, a(n) for n = 1..8191</a>

%F a((2*n-1)*2^p) = n*(p+1), p >= 0.

%F a(n) = A001511(n)*A003602(n). - _L. Edson Jeffery_, Nov 21 2015. (Follows directly from above formula.) - _Antti Karttunen_, Jan 19 2016

%p nmax:=70: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := n*(p+1) od: od: seq(a(n), n=1..nmax); # _Johannes W. Meijer_, Jan 21 2013

%o (Haskell)

%o interleave (hdx : tlx) y = hdx : interleave y tlx

%o oeis003602 = interleave [1..] oeis003602

%o oeis181988 = interleave [1..] (zipWith (+) oeis003602 oeis181988)

%o (Python)

%o from itertools import count

%o def interleave(A):

%o A1=next(A)

%o A2=interleave(A)

%o while True:

%o yield next(A1)

%o yield next(A2)

%o def multiples(k):

%o return (k*i for i in count(1))

%o interleave(multiples(k) for k in count(1))

%o (Python)

%o def A181988(n): return (m:=(n&-n).bit_length())*((n>>m)+1) # _Chai Wah Wu_, Jul 12 2022

%o (Scheme, with memoization-macro definec)

%o (definec (A181988 n) (if (even? n) (+ (A003602 n) (A181988 (/ n 2))) (A003602 n)))

%o ;; _Antti Karttunen_, Jan 19 2016

%Y Cf. A220466.

%Y Cf. A001511, A003602.

%K easy,nonn

%O 1,2

%A _David Spies_, Apr 04 2012

%E Definition replaced by a formula provided by _David Spies_, Sep 17 2012. _N. J. A. Sloane_, Nov 22 2015