login
A181980
Least positive integer m > 1 such that 1 - m^k + m^(2k) - m^(3k) + m^(4k) is prime, where k = A003592(n).
1
2, 4, 2, 6, 2, 20, 20, 26, 25, 10, 14, 5, 373, 4, 65, 232, 56, 2, 521, 911, 1156, 1619, 647, 511, 34, 2336, 2123, 1274, 2866, 951, 2199, 1353, 4965, 7396, 13513, 3692, 14103, 32275, 2257, 86, 3928, 2779, 18781, 85835, 820, 16647, 2468, 26677, 1172, 38361, 40842
OFFSET
1,1
COMMENTS
1 - m^k + m^(2*k) - m^(3^k) + m^(4*k) equals Phi(10*k,m).
First 15 terms were generated by the provided Mathematica program. All other terms found using OpenPFGW as Fermat and Lucas PRP. Term 16-20, 22-24, 27 have N^2-1 factored over 33.3% and proved using OpenPFGW;
terms 21, 25, 29-33, 36, 37, 39, 41, 42, 45, 48, 51 are proved using CHG pari script;
terms 26, 28, 34, 40 are proved using kppm PARI script;
terms 35, 38, 43, 44, 46, 47, 49, 50 do not yet have a primality certificate.
The corresponding prime number of term 51 (40842) has 236089 digits.
The corresponding prime numbers for the following terms are equal:
p(3) = p(2) = Phi(10, 2^4),
p(12) = p(9) = Phi(10, 5^50),
p(18) = p(14) = Phi(10, 2^160),
p(25) = p(21) = Phi(10, 34^512),
p(40) = p(34) = Phi(10, 86^4000).
FORMULA
a(n) = A085398(10*A003592(n)). - Jinyuan Wang, Jan 01 2023
EXAMPLE
n=1, A003592(1) = 1, when a=2, 1 - 2^1 + 2^2 - 2^3 + 2^4 = 11 is prime, so a(1)=2;
n=2, A003592(2) = 2, when a=4, 1 - 4^2 + 4^4 - 4^6 + 4^8 = 61681 is prime, so a(2)=4;
...
n=13, A003592(13) = 64, when a=373, PrimeQ(1 - 373^64 + 373^128 - 373^192 + 373^256) = True, while for a = 2..372, PrimeQ(1 - a^64 + a^128 - a^192 + a^256) = False, so a(13)=373.
MATHEMATICA
fQ[n_] := PowerMod[10, n, n] == 0; a = Select[10 Range@100, fQ]/10; l = Length[a]; Table[m = a[[j]]; i = 1; While[i++; cp = 1 - i^m + i^(2*m)-i^(3*m)+i^(4*m); ! PrimeQ[cp]]; i, {j, 1, l}]
PROG
(PARI) do(k)=my(m=1); while(!ispseudoprime(polcyclo(10*k, m++)), ); m
list(lim)=my(v=List(), N); for(n=0, log(lim)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); apply(do, vecsort(Vec(v))) \\ Charles R Greathouse IV, Apr 04 2012
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Lei Zhou, Apr 04 2012
EXTENSIONS
Term 50 added and comments updated by Lei Zhou, Jul 27 2012
Term 51 added and comments updated by Lei Zhou, Oct 10 2012
STATUS
approved