login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The product of primes <= n that are strongly prime to n.
10

%I #8 Jun 28 2013 05:07:15

%S 1,1,1,1,1,3,1,5,15,35,7,21,35,385,165,143,1001,15015,5005,85085,

%T 51051,46189,20995,440895,1616615,7436429,1716099,2860165,5311735,

%U 15935205,7436429,215656441,3234846615

%N The product of primes <= n that are strongly prime to n.

%C k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.

%H Peter Luschny, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/StrongCoprimality">Strong coprimality</a>.

%e a(11) = 3 * 7 = 21.

%p with(numtheory):

%p Primes := n -> select(k->isprime(k),{$1..n}):

%p StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1):

%p StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n):

%p A181836 := proc(n) local i; mul(i,i=StrongCoprimePrimes(n)) end:

%t a[n_] := Times @@ Select[Range[2, n], PrimeQ[#] && CoprimeQ[#, n] && !Divisible[n-1, #] &]; Table[a[n], {n, 0, 32}] (* _Jean-François Alcover_, Jun 28 2013 *)

%Y Cf. A181831, A181832, A181833, A181834, A181835, A001783.

%K nonn

%O 0,6

%A _Peter Luschny_, Nov 17 2010