login
A181834
The number of primes <= n that are strongly prime to n.
10
0, 0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3, 5, 4, 5, 5, 4, 4, 6, 6, 6, 6, 6, 6, 7, 6, 7, 9, 8, 7, 7, 7, 9, 9, 8, 8, 10, 9, 10, 11, 10, 10, 12, 12, 12, 12, 11, 11, 13, 13, 12, 12, 12, 12, 14, 13, 14, 15, 14, 15, 15, 13, 15, 16, 15, 14, 16, 17
OFFSET
0,9
COMMENTS
k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.
EXAMPLE
a(11) = card(primes in {3, 4, 6, 7, 8, 9}) = card({3, 7}) = 2.
MAPLE
with(numtheory):
Primes := n -> select(k->isprime(k), {$1..n}):
StrongCoprimes := n -> select(k->igcd(k, n)=1, {$1..n}) minus divisors(n-1):
StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n):
A181834 := n -> nops(StrongCoprimePrimes(n)):
MATHEMATICA
strongCoprimeQ[k_, n_] := PrimeQ[k] && CoprimeQ[n, k] && !Divisible[n-1, k]; a[n_] := Select[Range[n], strongCoprimeQ[#, n]&] // Length; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jul 23 2013 *)
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 17 2010
STATUS
approved