OFFSET
0,9
COMMENTS
k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.
LINKS
Peter Luschny, Strong coprimality.
EXAMPLE
a(11) = card(primes in {3, 4, 6, 7, 8, 9}) = card({3, 7}) = 2.
MAPLE
with(numtheory):
Primes := n -> select(k->isprime(k), {$1..n}):
StrongCoprimes := n -> select(k->igcd(k, n)=1, {$1..n}) minus divisors(n-1):
StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n):
A181834 := n -> nops(StrongCoprimePrimes(n)):
MATHEMATICA
strongCoprimeQ[k_, n_] := PrimeQ[k] && CoprimeQ[n, k] && !Divisible[n-1, k]; a[n_] := Select[Range[n], strongCoprimeQ[#, n]&] // Length; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jul 23 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 17 2010
STATUS
approved