Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 21 2023 07:31:49
%S 1,2,6,4,30,12,210,60,8,2310,36,420,24,30030,180,4620,120,510510,1260,
%T 72,60060,16,900,840,9699690,13860,360,1021020,48,6300,9240,223092870,
%U 180180,2520,19399380,240,69300,216,120120,6469693230,1800,3063060,144,44100,27720,446185740,1680,900900,1080,2042040,200560490130,12600,58198140,32,720
%N a(n) = member of A025487 whose prime signature is conjugate to the prime signature of A025487(n).
%C A permutation of the members of A025487.
%C If integers m and n have conjugate prime signatures, then A001222(m) = A001222(n), A071625(m) = A071625(n), A085082(m) = A085082(n), and A181796(m) = A181796(n).
%H Charles R Greathouse IV, <a href="/A181822/b181822.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConjugatePartition.html">Conjugate Partition</a>
%F If A025487(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A025487(n))). a(n) also equals A108951(A181820(n)).
%e A025487(5) = 8 = 2^3 has a prime signature of (3). The partition that is conjugate to (3) is (1,1,1), and the member of A025487 with that prime signature is 30 = 2*3*5 (or 2^1*3^1*5^1). Therefore, a(5) = 30.
%t f[n_] := Block[{ww, dec}, dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 + Length@ NestWhileList[NextPrime@ # &, 1, Times @@ {##} <= n &, All] ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= n, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; Sort[Map[{Times @@ MapIndexed[Prime[First@ #2]^#1 &, #], Times @@ MapIndexed[Prime[First@ #2]^#1 &, Table[LengthWhile[#1, # >= j &], {j, #2}]] & @@ {#, Max[#]}} &, Join @@ f[2310]]][[All, -1]] (* _Michael De Vlieger_, Oct 16 2018 *)
%o (PARI) partitionConj(v)=vector(v[1],i,sum(j=1,#v,v[j]>=i))
%o primeSignature(n)=vecsort(factor(n)[,2]~,,4)
%o f(n)=if(n==1, return(1)); my(e=partitionConj(primeSignature(n))~); factorback(concat(Mat(primes(#e)~),e))
%o A025487=[2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768];
%o concat(1, apply(f, A025487)) \\ _Charles R Greathouse IV_, Jun 02 2016
%Y Other rearrangements of A025487 include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821.
%Y A181825 lists members of A025487 with self-conjugate prime signatures. See also A181823-A181824, A181826-A181827.
%K nonn,look
%O 1,2
%A _Matthew Vandermast_, Dec 07 2010