OFFSET
0,3
COMMENTS
Same as A007317 if the first 1 is omitted. Has several combinatorial interpretations so deserves its own entry.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Ira M. Gessel, Jang Soo Kim, A note on 2-distant noncrossing partitions and weighted Motzkin paths, arXiv:1003.5301 [math.CO], 2010.
Ira M. Gessel, Jang Soo Kim, A note on 2-distant noncrossing partitions and weighted Motzkin paths, Discrete Math. 310 (2010), no. 23, 3421-3425.
FORMULA
a(n) ~ 5^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) +2*(-3*n+4)*a(n-1) +5*(n-2)*a(n-2)=0. - R. J. Mathar, Aug 06 2013
a(n) = JacobiP(n-1,1,-n-1/2,9)/n for n>0. - Peter Luschny, Sep 23 2014
a(n) = 1 + Sum_{k=1..n-1} a(k) * a(n-k). - Ilya Gutkovskiy, Jul 01 2020
MAPLE
A181768 := n -> `if`(n=0, 1, JacobiP(n-1, 1, -n-1/2, 9)/n):
seq(round(evalf(A181768(n), 99)), n=0..33); # Peter Luschny, Sep 23 2014
MATHEMATICA
CoefficientList[Series[3/2-Sqrt[(1-5x)/(1-x)]/2, {x, 0, 40}], x] (* Harvey P. Dale, Jul 28 2013 *)
PROG
(PARI) x='x + O('x^50); Vec((1/2)*(3 - sqrt((1-5*x)/(1-x)))) \\ G. C. Greubel, Feb 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 12 2010
STATUS
approved