Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:54
%S 2,6,42,546,9282,176358,4056234,117630786,4822862226,226674524622,
%T 13373796952698,1110025147073934,98792238089580126,
%U 9978016047047592726,1067647717034092421682,146267737233670661770434
%N Partial products of A181103.
%C a(n+1)-a(n) is divisible by 6 for n > 1.
%e First three terms of A181103 are 2, 3, 7, so a(3) = 2*3*7 = 42.
%o (Magma) A181103:=function(n); S:=[2, 3]; if n le 2 then return S[n]; end if; p:=5; for k in [3..n] do while not IsPrime(Abs(S[k-2]+S[k-1]-p)) do p:=NextPrime(p); end while; Append(~S, p); if k eq n then return p; end if; p:=NextPrime(p); end for; end function; A181737:=function(n); S:=[ A181103(k): k in [1..n] ]; T:=[ m eq 1 select S[1] else Self(m-1)*S[m]: m in [1..n] ]; return T[n]; end function; [ A181737(n): n in [1..20] ]; // _Klaus Brockhaus_, Dec 19 2010
%Y Cf. A181103.
%K nonn,easy
%O 1,1
%A _Giovanni Teofilatto_