login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181413
a(n) is the smallest number such that a(n)^2 + 1 is divisible by A002144(1)* A002144(2)*...* A002144(n).
3
2, 8, 47, 2163, 18543, 241727, 3101272, 842894268, 8245041748, 521781374353, 101476250977928, 671795954794788, 32126984574675193, 425090834074746637, 309609468228403885693, 25836182225971546313682, 38544366727563360743217, 217758730168965028986551783, 25789605237863389220212237968, 309600287787935978580674202007
OFFSET
1,1
EXAMPLE
a(1) = 2 because A002144(1) | 2^2+1 = 5 ;
a(2)=8 because A002144(1) * A002144(2) | 8^2+1 = 5*13 ;
a(6) = 241727 because A002144(1) * A002144(2)*...* A002144(6) | 241727^2+1
= 2 * 5 * 13 * 17 * 29 * 37 * 41 * 601.
MAPLE
with(numtheory):nn:=1000:T:=array(1..1000):k:=1:for x from 1 to nn do: p:=4*x+1:if
type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:pr:=1:for n from 1 to k do:
pp:=pr*T[n] :ind:=0:for q from 1 to pp while (ind=0) do: z:=q^2+1:if irem(z, pp)=0
and ind = 0 then ind: = 1:pr:=pp:print( q):else fi:od:od:
# Alternative
PP:= select(isprime, [seq(i, i=5..200, 4)]):
f:= n -> min(map(t -> rhs(op(t)), [msolve(x^2+1, convert(PP[1..n], `*`))])):
map(f, [$1..20]); # Robert Israel, Feb 01 2019
CROSSREFS
Cf. A002144 (Pythagorean primes: primes of form 4n+1) A002731.
Sequence in context: A329096 A233337 A199136 * A358822 A003275 A253665
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 28 2011
EXTENSIONS
More terms from Robert Israel, Feb 01 2019
STATUS
approved