login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181411
a(n) = Sum_{k=0..n} C(n,k)*sigma(n+k) for n>=1.
2
4, 18, 55, 150, 379, 915, 2146, 4934, 11080, 24833, 54476, 119091, 259432, 556700, 1195135, 2561094, 5428597, 11488866, 24350993, 51296325, 107427025, 225330244, 472762497, 985966379, 2049357779, 4267962522, 8887535983, 18431783744
OFFSET
1,1
FORMULA
Equals the logarithmic derivative of A181410.
Conjecture: a(n) ~ c * n * 2^n, where c = Pi^2/4 = A091476. - Vaclav Kotesovec, Oct 05 2020
EXAMPLE
L.g.f.: L(x) = 4*x + 18*x^2/2 + 55*x^3/3 + 150*x^4/4 + 379*x^5/5 +...
Exponentiation yields the g.f. of A181410:
exp(L(x)) = 1 + 4*x + 17*x^2 + 65*x^3 + 234*x^4 + 804*x^5 +...
The initial terms begin:
a(1) = 1*1 + 1*3 = 4;
a(2) = 1*3 + 2*4 + 1*7 = 18;
a(3) = 1*4 + 3*7 + 3*6 + 1*12 = 55;
a(4) = 1*7 + 4*6 + 6*12 + 4*8 + 1*15 = 150; ...
MATHEMATICA
Table[Sum[Binomial[n, k] * DivisorSigma[1, n+k], {k, 0, n}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 05 2020 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(m, k)*sigma(n+k))}
CROSSREFS
Cf. A181410.
Sequence in context: A212250 A229788 A242206 * A238915 A212680 A027286
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 19 2010
STATUS
approved