login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180683
T(n,k) is the sum of the path counts in the (right-aligned Ferrers plots of) the partitions of n in exactly k parts.
2
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 6, 6, 3, 1, 1, 1, 6, 9, 6, 3, 1, 1, 1, 10, 14, 13, 6, 3, 1, 1, 1, 10, 24, 18, 13, 6, 3, 1, 1, 1, 15, 31, 35, 23, 13, 6, 3, 1, 1, 1, 15, 45, 51, 40, 23, 13, 6, 3, 1, 1, 1, 21, 64, 85, 65, 46, 23, 13, 6, 3, 1, 1, 1, 21, 82, 118, 111, 71, 46, 23, 13, 6, 3
OFFSET
1,8
COMMENTS
Reverse of last row converges to middle value of odd rows: 1, 1, 3, 6, 13, 23, 46, 78, 143, 240, 414, 673, 1127, 1788, 2885, 4514, 7096,10885, 16784, 25338, 38347, 57147, 85094, 125157, ...
Contribution from Robert G. Wilson v, Sep 25 2010: (Start)
\k..1....2....3....4....5....6....7....8....9...10...11...12...13...14...15...16...17...18
n\
..
.1..1
.2..1....1
.3..1....1....1
.4..1....3....1....1
.5..1....3....3....1....1
.6..1....6....6....3....1....1
.7..1....6....9....6....3....1....1
.8..1...10...14...13....6....3....1....1
.9..1...10...24...18...13....6....3....1....1
10..1...15...31...35...23...13....6....3....1....1
11..1...15...45...51...40...23...13....6....3....1....1
12..1...21...64...85...65...46...23...13....6....3....1....1
13..1...21...82..118..111...71...46...23...13....6....3....1....1
14..1...28..107..181..171..128...78...46...23...13....6....3....1....1
15..1...28..144..244..268..203..135...78...46...23...13....6....3....1....1
16..1...36..175..362..393..334..223..143...78...46...23...13....6....3....1....1
17..1...36..221..470..590..503..372..231..143...78...46...23...13....6....3....1....1
18..1...45..279..654..844..800..582..395..240..143...78...46...23...13....6....3....1....1
... (End)
LINKS
MATHEMATICA
pathcount[p_] := Block[{ferr = (0*Range[#1] &) /@ p}, Last[ Fold[ Rest[ FoldList[ Plus, 0, Drop[#1, Length[#1] - Length[#2]] + #2]] &, 1 + First[ferr], Rest[ferr]]]]; t[n_, k_] := Plus @@ pathcount /@ IntegerPartitions[n, {k}]; Table[ t[n, k], {n, 13}, {k, n}] // Flatten
CROSSREFS
Cf. A000012, A008805. [From Robert G. Wilson v, Sep 25 2010]
Sequence in context: A295920 A176187 A372288 * A375360 A365331 A214635
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Sep 16 2010
STATUS
approved