login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180127
Upper bound for the determinant of an n X n matrix whose elements are a permutation of the first n^2 prime numbers.
2
2, 32, 7414, 4993844, 5761178228, 11320943775475, 35966786849223443, 154715716383037989022, 1041732064414822689366009, 8436103376958505162325231670, 95816938885687281564299004113250, 1337411611273240103793149357629547975, 24089834168067078066162508828810807131186
OFFSET
1,1
COMMENTS
a(n) is an upper bound for A180128(n).
LINKS
Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum JIPAM, Vol. 10, Iss. 3, Art. 63, 2008
Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.
FORMULA
Let c = A007504(n^2)/n [(1/n)*sum of first n^2 primes]
and d = A024450(n^2)/n [(1/n)*sum of first n^2 squares of primes]
Then a(n) = floor(c*sqrt((d-t)^(n-1))) with t = (c^2-d)/(n-1).
log(a(n)) ~ (5*log(n) - log(3))*n/2 + n*log(log(n)). - Vaclav Kotesovec, Aug 28 2021
PROG
(PARI) a180127(n)={if(n<2, 2, my(c=sum(k=1, n^2, prime(k))/n, d=sum(k=1, n^2, prime(k)^2)/n, t=(c^2-d)/(n-1)); floor(c*sqrt((d-t)^(n-1))))} \\ Hugo Pfoertner, Aug 27 2021
CROSSREFS
Cf. A180128 [Maximal determinant of matrix with first n^2 primes], A085000 [Maximal determinant of matrix with elements 1, ..., n^2], A180087 [Upper bound for A085000], A007504 [Sum of first n primes], A024450 [Sum of first n squares of primes].
Sequence in context: A247859 A202629 A129349 * A342099 A091804 A012853
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 12 2010
STATUS
approved