OFFSET
0,2
COMMENTS
This sequence is a bisection of A118277 (even part).
Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012
The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(6 + x)/(1 - x)^3.
a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0.
a(-n) = A001106(n).
Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0.
a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011
a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013
E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017
MATHEMATICA
f[n_] := n (7 n + 5)/2; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
LinearRecurrence[{3, -3, 1}, {0, 6, 19}, 60] (* or *) Array[(#(7# + 5))/2&, 60, 0] (* Harvey P. Dale, Aug 19 2011 *)
CoefficientList[Series[x (6 + x)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2012 *)
PROG
(Magma) [n*(7*n+5)/2: n in [0..50]]; // Bruno Berselli, Sep 23 2016
(Magma) I:=[0, 6, 19]; [n le 3 select I[n] else 3*Self(n-1) -3*Self(n-2) +Self(n-3): n in [1..60]]; // Vincenzo Librandi, Oct 15 2012
(PARI) a(n)=n*(7*n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 13 2011
STATUS
approved