login
A179666
Products of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3).
14
432, 648, 2000, 5000, 5488, 10125, 16875, 19208, 21296, 27783, 35152, 64827, 78608, 107811, 109744, 117128, 177957, 194672, 214375, 228488, 300125, 390224, 395307, 397953, 476656, 555579, 668168, 771147, 810448, 831875
OFFSET
1,1
FORMULA
Sum_{n>=1} 1/a(n) = P(3)*P(4) - P(7) = A085541 * A085964 - A085967 = 0.005171..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={3, 4}; Select[Range[10^6], f]
With[{nn=40}, Select[Flatten[{#[[1]]^4 #[[2]]^3, #[[1]]^3 #[[2]]^4}&/@ Subsets[ Prime[Range[nn]], {2}]]//Union, #<=16nn^3&]] (* Harvey P. Dale, Nov 15 2020 *)
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\8)^(1/4), t=p^4; forprime(q=2, (lim\t)^(1/3), if(p==q, next); listput(v, t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved