Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jul 28 2021 23:07:51
%S 2,1,2,-1,10,-43,266,-1853,14834,-133495,1334962,-14684569,176214842,
%T -2290792931,32071101050,-481066515733,7697064251746,-130850092279663,
%U 2355301661033954,-44750731559645105,895014631192902122,-18795307255050944539
%N a(n) is the unique integer such that Sum_{k=0..p-1} b(k)/(-n)^k == a(n) (mod p) for any prime p not dividing n, where b(0), b(1), b(2), ... are Bell numbers given by A000110.
%C On July 17, 2010 Zhi-Wei Sun conjectured that a(n) exists for every n=1,2,3,... He noted that a(1)=2 since Sum_{k=0..p-1} (-1)^k * b(k) == b(p) (mod p), and conjectured that a(2)=1, a(3)=2, a(4)=-1, a(5)=10, a(6)=-43, a(7)=266, a(8)=-1853, a(9)=14834, a(10)=-133495. It seems that (-1)^(n-1)*a(n) > 0 for all n=3,4,5,...
%C I guess that a(2n) == (-1)^(n-1) (mod 4) and a(2n-1) == 2 (mod 4) for all n=1,2,3,... Perhaps a(2n-1) == 2 (mod 8) for every positive integer n. - _Zhi-Wei Sun_, Jul 18 2010
%C On August 5, 2010 Zhi-Wei Sun and Don Zagier proved that a(n) actually equals (-1)^(n-1)*D(n-1)+1, where D(0), D(1), D(2), ... are derangement numbers given by A000166. - _Zhi-Wei Sun_, Aug 07 2010
%H Seiichi Manyama, <a href="/A179508/b179508.txt">Table of n, a(n) for n = 1..451</a>
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/0911.5665">Open Conjectures on Congruences</a>, preprint, arXiv:0911.5665 [math.NT], 2009-2010.
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1006.2776">On Apery numbers and generalized central trinomial coefficients</a>, preprint, arXiv:1006.2776 [math.NT], 2010-2011.
%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;7bbd51e4.1007">A conjecture on Bell numbers</a> (a message to Number Theory List on July 17, 2010) [From _Zhi-Wei Sun_, Jul 18 2010]
%H Zhi-Wei Sun and Don Zagier, <a href="https://doi.org/10.1017/S0004972711002218">On a curious property of Bell numbers</a>, Bulletin of the Australian Mathematical Society, Volume 84, Issue 1, August 2011. [_Zhi-Wei Sun_, Aug 07 2010]
%F a(n) = a(n-1)*(1-n)+n+1. - _Jon Maiga_, Jul 10 2021
%p A179508:= n-> (-1)^n*(n!*add((-1)^(k)/k!, k=0..n))+1 : seq(A179508(n), n=0..21);
%p # second program:
%p G(x):=(2-x)*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0; seq((-1)^n*f[n], n=0..21); # _Mélika Tebni_, Jul 10 2021
%t a[1] = 2;
%t a[n_]:=a[n]=a[n-1]*(1-n)+n+1;
%t Array[a, 30] (* _Jon Maiga_, Jul 10 2021 *)
%Y Cf. A000110, A000166.
%K sign
%O 1,1
%A _Zhi-Wei Sun_, Jul 17 2010