login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178901
a(1)=2; for n > 1, a(n) is the largest number <= 2*a(n-1) divisible by n.
2
2, 4, 6, 12, 20, 36, 70, 136, 270, 540, 1078, 2148, 4290, 8568, 17130, 34256, 68510, 137016, 274018, 548020, 1096032, 2192058, 4384099, 8768184, 17536350, 35072700, 70145379, 140290752, 280581496, 561162990, 1122325953, 2244651904
OFFSET
1,1
COMMENTS
The definition "a(1)=1; for n > 1, a(n) is the largest number <= 2*a(n-1) divisible by n" produces the natural numbers 1,2,3,4,5,... (A000027).
EXAMPLE
2*36=72. But 72 is not a multiple of 7, so we must look for the largest multiple of 7 <= 72, and this is 70.
MAPLE
A178901 := proc(n) option remember; if n =1 then 2; else for a from 2*procname(n-1) by -1 do if a mod n = 0 then return a; end if; end do: end if; end proc: seq(A178901(n), n=1..30) ; # R. J. Mathar, Jun 26 2010
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = n*(2*va[n-1]\n); ); va; } \\ Michel Marcus, Dec 18 2020
CROSSREFS
Cf. A000027.
Sequence in context: A294429 A107383 A078025 * A164146 A370582 A279245
KEYWORD
nonn
AUTHOR
J. Lowell, Jun 21 2010
EXTENSIONS
a(8)-a(32) from Robert G. Wilson v and John W. Layman, Jun 28 2010
STATUS
approved