login
A178857
Decimal expansion of 4*Pi/(zeta(3/2)^(2/3)).
0
6, 6, 2, 5, 0, 0, 4, 0, 1, 8, 7, 9, 1, 2, 4, 1, 5, 3, 8, 3, 0, 1, 2, 0, 2, 5, 3, 0, 0, 6, 7, 8, 2, 5, 1, 4, 7, 2, 3, 2, 4, 8, 2, 3, 0, 8, 1, 3, 0, 4, 1, 7, 4, 0, 0, 0, 7, 2, 9, 8, 1, 2, 7, 9, 5, 3, 6, 6, 4, 4, 1, 6, 0, 6, 9, 0, 3, 0, 0, 4, 5, 3, 8, 1, 3, 6, 8, 2, 4, 9, 6, 5, 5, 0, 0, 0, 8, 8, 8, 3, 5, 4, 4, 0, 7, 7, 6, 4, 8, 3, 3, 0, 3, 6, 9, 7, 9, 7, 8, 3
OFFSET
1,1
COMMENTS
Seiringer derived a constant which arises in the critical temperature of dilute Bose gases, 4*Pi/(zeta(3/2)^(2/3)).
REFERENCES
Robert Seiringer and Daniel Ueltschi, Rigorous upper bound on the critical temperature of dilute Bose gases, Phys. Rev. B 80, 014502, 2009.
EXAMPLE
6.625004018791241538301202530067825147232482308130417400072981279536644160690300453813682496550008885.
MATHEMATICA
RealDigits[(4 Pi)/Surd[Zeta[3/2]^2, 3], 10, 120][[1]] (* Harvey P. Dale, Dec 03 2018 *)
CROSSREFS
Cf. A078434 Decimal expansion of zeta(3/2), A178856 Decimal expansion of zeta(3/2)^(2/3).
Sequence in context: A021155 A254245 A218387 * A003676 A369508 A033259
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Jun 20 2010
EXTENSIONS
Corrected and extended by Harvey P. Dale, Dec 03 2018
STATUS
approved