login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178808
a(n) = (1/n^2) * Sum_{k = 0..n-1} (2*k+1)*(D_k)^2, where D_0, D_1, ... are central Delannoy numbers given by A001850.
6
1, 7, 97, 1791, 38241, 892039, 22092673, 571387903, 15271248769, 418796912007, 11725812711009, 333962374092543, 9648543623050593, 282164539499639559, 8338391167566634497, 248661515283002490879, 7474768663941435203073
OFFSET
1,2
COMMENTS
On Jun 14 2010, Zhi-Wei Sun conjectured that a(n) = (1/n^2) * Sum_{k = 0..n-1} (2*k+1)*(D_k)^2 is always an integer and that p^2*a(p) = p^2 - 4*p^3*q_p(2) - 2*p^4*q_p(2)^2 (mod p^5) for any prime p > 3, where q_p(2) denotes the Fermat quotient (2^(p-1) - 1)/p (see Sun, Remark 4.3, p. 26, 2014). He also conjectured that Sum_{k = 0..n-1} (2*k+1)*(-1)^k*(D_k)^2 == 0 (mod n*D_n/(3,D_n)) for all n = 1,2,3,....
The fact that a(n) is an integer follows directly from the formulas for a(n) in the formula section below. - Mark van Hoeij, Nov 13 2022
LINKS
Zhi-Wei Sun, Arithmetic properties of Apery numbers and central Delannoy numbers, arXiv:1006.2776 [math.NT], 2011.
Zhi-Wei Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57 (2014), no. 7, 1375-1400; arXiv:1008.3887 [math.NT], 2010-2014.
FORMULA
a(n) ~ (1 + sqrt(2))^(4*n) / (16*Pi*n^2). - Vaclav Kotesovec, Jan 24 2019
G.f.: Integral(hypergeom([1/2, 1/2], [2], -32*x/(1 - 34*x + x^2))/((1 - x)*(1 - 34*x + x^2)^(1/2))). - Mark van Hoeij, Nov 10 2022
a(n) = (6*A001850(n)*A001850(n-1) - A001850(n)^2 - A001850(n-1)^2)/8. - Mark van Hoeij, Nov 12 2022
a(n) = (3*f(n)*f(n-1) - g(n))/4, where g(n) = hypergeom([n, -n, 1/2], [1, 1], -8) and f(n) = hypergeom([-n, -n], [1], 2). This formula also gives an integer value for n = 0. - Peter Luschny, Nov 13 2022
EXAMPLE
For n = 3 we have a(3) = (D_0^2 + 3*D_1^2 + 5*D_2^2)/3^2 = (1 + 3*3^2 + 5*13^2)/3^2 = 97.
MAPLE
A001850 := n -> LegendreP(n, 3); seq((6*A001850(n)*A001850(n-1)-A001850(n)^2-A001850(n-1)^2)/8, n=1..20); # Mark van Hoeij, Nov 12 2022
# Alternative:
g := n -> hypergeom([n, -n, 1/2], [1, 1], -8): # A358388
f := n -> hypergeom([-n, -n], [1], 2): # A001850
a := n -> (3*f(n)*f(n-1) - g(n)) / 4:
seq(simplify(a(n)), n = 1..17); # Peter Luschny, Nov 13 2022
MATHEMATICA
DD[n_]:=Sum[Binomial[n+k, 2k]Binomial[2k, k], {k, 0, n}]; SS[n_]:= Sum[(2k+1)*DD[k]^2, {k, 0, n-1}]/n^2; Table[SS[n], {n, 1, 25}]
Table[Sum[(2k+1)*JacobiP[k, 0, 0, 3]^2, {k, 0, n-1}]/n^2, {n, 1, 30}] (* G. C. Greubel, Jan 23 2019 *)
PROG
(Python) # prepends a(0) = 0
def A178808List(size: int) -> list[int]:
A358387 = A358387gen()
A358388 = A358388gen()
return [(next(A358387) - next(A358388)) // 4 for n in range(size)]
print(A178808List(18)) # Peter Luschny, Nov 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 16 2010
STATUS
approved