login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178791
The arithmetic mean of (2k+1)(-1)^k*A_k (k=0,...,n-1), where A_0, A_1,... are Apéry numbers given by A005259.
7
1, -7, 117, -2441, 57449, -1453635, 38609845, -1061792695, 29973352185, -863536596143, 25288254409373, -750531594051981, 22525211241191881, -682459907754004723, 20845409947239778533, -641211780685502724425
OFFSET
1,2
COMMENTS
On Jun 14 2010, Zhi-Wei Sun conjectured that the number a(n) = n^{-1}*Sum_{k=0..n-1} (2*k+1)*(-1)^k*A_k is always an integer and that a(p) = p(p/3) (mod p^3) for any prime p>3. He also formulated the following conjecture: If p=1 (mod 3) is a prime and p = x^2 + 3y^2 with x,y integers then Sum_{k=0..p-1} (-1)^k*A_k = 4*x^2 - 2*p (mod p^2); if p=2 (mod 3) is a prime then Sum_{k=0..p-1 }(-1)^k*A_k=0 (mod p^2).
LINKS
Zhi-Wei Sun, Arithmetic properties of Apery numbers and central Delannoy numbers, arXiv:1006.2776 [math.NT], 2010-2011.
FORMULA
G.f.: apart from the minus signs (just replace x by -x) the generating function is 2*x*G/(x+1) + Int((x-1)*G/(x+1)^2, x) where G is the generating function of A005259. - Mark van Hoeij, May 07 2013
a(n) ~ -(-1)^n * 2^(3/4) * (1 + sqrt(2))^(4*n) / (24 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Jan 24 2019
EXAMPLE
For n=3 we have a(3) = (A_0 - 3A_1 + 5A_2)/3 = (1 - 3*5 + 5*73)/3 = 117.
MAPLE
G := (-1/2)*(3*x-3+(x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3, 2/3], [1], (-1/2)*(x^2-7*x+1)*(x+1)^(-3)*(x^2-34*x+1)^(1/2)+(1/2)*(x^3+30*x^2 -24*x+1)*(x+1)^(-3))^2;
ogf := 2*x*G/(x+1)+Int((x-1)*G/(x+1)^2, x);
series(ogf, x=0, 25);
series(-subs(x=-x, %), x=0, 25); # Mark van Hoeij, May 07 2013
MATHEMATICA
Apery[n_]:= Sum[Binomial[n+k, k]^2Binomial[n, k]^2, {k, 0, n}]; AA[n_]:= Sum[(2k+1)(-1)^k*Apery[k], {k, 0, n-1}]/n; Table[AA[n], {n, 25}]
PROG
(PARI) A(n) = sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2); \\ A005259
a(n) = sum(k=0, n-1, (2*k+1)*(-1)^k*A(k))/n; \\ Michel Marcus, Jan 24 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Jun 14 2010
STATUS
approved