login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178678
Decimal expansion of the sum of alternating reciprocal square roots, omitting terms where n is a perfect square.
1
0, 8, 8, 2, 4, 8, 5, 3, 7, 1, 3, 8, 3, 1, 4, 9, 3, 9, 1, 6, 9, 9, 6, 6, 2, 0, 7, 2, 2, 2, 2, 2, 1, 0, 6, 8, 3, 1, 5, 7, 3, 7, 5, 8, 9, 2, 3, 0, 0, 0, 7, 8, 7, 3, 7, 4, 2, 1, 3, 3, 3, 6, 1, 4, 1, 1, 2, 0, 6, 3, 6, 8, 4, 7, 4, 6, 3, 4, 3, 5, 8, 2, 7, 8, 4, 5, 9, 3, 7, 0, 0, 7, 8, 0, 6, 9, 1, 3, 3, 1, 5, 8, 9, 6, 7
OFFSET
0,2
COMMENTS
Provides a closed form for the Riemann zeta function of one half: Zeta(1/2) = (1 + sqrt(2))(R - log(2)).
The omitted sum of perfect squares equates to the natural logarithm of 2. Giving the alternating sum of all reciprocal square roots as log(2) - R.
LINKS
FORMULA
R = Sum_{n>=2} (-1)^n/sqrt(n) for n that are not a perfect square.
R = 1/sqrt(2) - 1/sqrt(3) - 1/sqrt(5) + 1/sqrt(6) - 1/sqrt(7) + 1/sqrt(8) + ...
R = Sum_{n>=2} (-1)^(n+1)*(1-sqrt(n))/n.
EXAMPLE
R=0.0882485371383149391699662072222210683157375892300078737421333614112...
MATHEMATICA
RealDigits[(Sqrt[2] -1)*Zeta[1/2] +Log[2], 10, 100][[1]]
PROG
(PARI) default(realprecision, 100); (sqrt(2)-1)*zeta(1/2)+log(2) \\ G. C. Greubel, Jan 27 2019
(Magma) SetDefaultRealField(RealField(100)); L:=RiemannZeta(); (Sqrt(2)-1)*Evaluate(L, 1/2) +Log(2); // G. C. Greubel, Jan 27 2019
(SageMath) numerical_approx((sqrt(2)-1)*zeta(1/2)+log(2), digits=100) # G. C. Greubel, Jan 27 2019
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Matt Rieckman (mjr162006(AT)yahoo.com), Jun 03 2010
EXTENSIONS
Minor correction, simplified description, and additional comments Matt Rieckman (mjr162006(AT)yahoo.com), Jun 28 2010
STATUS
approved