Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 30 2019 00:00:50
%S 2,3,6,10,15,30,31,36,40,51,66,70,91,100,136,175,190,205,225,231,261,
%T 285,286,316,321,331,370,376,411,441,465,496,516,520,526,535,546,565,
%U 576,586,591,681,720,730,745,750,766,855,871,906,916,951,975,1081,1120
%N Numbers n such that n^2 +- (n-1)^2 are primes.
%H G. C. Greubel, <a href="/A178659/b178659.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = 1 + A068501(n). - _Zak Seidov_, Feb 10 2015
%e 2 is in the sequence because 2^2 + 1^2 = 5 and 2^2 - 1^2 = 3 are both prime.
%e 3 is in the sequence because 3^2 + 2^2 = 13 and 3^2 - 2^2 = 5 are both prime.
%t lst={};Do[If[PrimeQ[n^2-(n-1)^2]&&PrimeQ[n^2+(n-1)^2],AppendTo[lst,n]],{n,7!}];lst
%t Select[Range[8!], PrimeQ[#^2 -(#-1)^2] && PrimeQ[#^2 +(#-1)^2] &] (* _G. C. Greubel_, Jan 28 2019 *)
%o (PARI) A178659()={my(maxx=1000);n=2;ptr=0;
%o while(n<=maxx,q1=n^2-(n-1)^2;q2=n^2+(n-1)^2;
%o if(isprime(q1)&&isprime(q2),ptr++;write("b178659.txt",ptr," ",n));n++); } \\ _Bill McEachen_, Jun 13 2014
%Y Cf. A068501.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Jun 01 2010