Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:52:05
%S 1,2,1,3,1,1,5,1,1,1,1,7,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,13,1,1,1,
%T 1,1,1,1,1,1,1,1,1,17,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,19,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,23,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,29
%N Triangle T(n,m) read by rows: T(n,0)= prime(n); T(n,m)=1 if m>=1.
%C The sequence reflects a conjecture on the denominator of inverse Bernoulli polynomials in A178340: if the row index is one less than one of the primes in A008578, the row of denominators starts with that prime and contains 1's in the remaining entries.
%C [Row sums in A178252 are A159069(n+1), unless there is a common factor in numerator and denominator. The row sum over columns with index of the same parity as the row index in the table of fractions of the [x^m] B^{-1}(n,x) in A178252 are: 1, 1, 1/3+1=4/3, 1+1=2, 1/5+2+1=16/5, 1+10/3+1=16/3, 1/7+3+5+1=64/7, 16, 256/9, 256/5, 1024/11, 512/3, 496/13, ... =A084623(n+1)/A000265(n+1).]
%F T(n,0) = A008578(n+1). T(n,m) =1, 1<=m<=A008578(n+1)-1.
%e 1;
%e 2,1;
%e 3,1,1;
%e 5,1,1,1,1;
%e 7,1,1,1,1,1,1;
%e 11,1,1,1,1,1,1,1,1,1,1;
%e 13,1,1,1,1,1,1,1,1,1,1,1,1;
%e 17,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
%e 19,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
%e 23,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
%e 29,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
%Y Cf. A076274 (row sums).
%K nonn,tabf,easy,less
%O 0,2
%A _Paul Curtz_, May 31 2010