login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178499
Number of ways to place 6 nonattacking knights on an n X n board.
3
0, 0, 0, 170, 13384, 257318, 2774728, 20202298, 110018552, 481719518, 1781124856, 5756568738, 16676946372, 44127887910, 108192675468, 248568720338, 539925974784, 1116836380926, 2212958151968, 4220919779218
OFFSET
1,4
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
FORMULA
Explicit formula: a(n) = n^12/720-(3*n^10)/16+n^9/2+(1553*n^8)/144-(163*n^7)/3-(4493*n^6)/16+(4721*n^5)/2+(578777*n^4)/360-(143156*n^3)/3+(124917*n^2)/2+374990*n-899982, n >= 10.
G.f.: -2*x^4 * (200*x^18 -1540*x^17 +2602*x^16 +15442*x^15 -98586*x^14 +256698*x^13 -336146*x^12 +70977*x^11 +587107*x^10 -1302115*x^9 +1569905*x^8 -1100786*x^7 +367130*x^6 -212358*x^5 +247682*x^4 +212463*x^3 +48293*x^2 +5587*x +85) / (x-1)^13.
MATHEMATICA
CoefficientList[Series[- 2 x^3 (200 x^18 - 1540 x^17 + 2602 x^16 + 15442 x^15 - 98586 x^14 + 256698 x^13 - 336146 x^12 + 70977 x^11 + 587107 x^10 - 1302115 x^9 + 1569905 x^8 - 1100786 x^7 + 367130 x^6 - 212358 x^5 + 247682 x^4 + 212463 x^3 + 48293 x^2 + 5587 x + 85) / (x - 1)^13, {x, 0, 40}], x] (* Vincenzo Librandi, May 31 2013 *)
CROSSREFS
Column k=6 of A244081.
Sequence in context: A289648 A187520 A210784 * A133328 A098244 A250957
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 28 2010
STATUS
approved