OFFSET
1,2
COMMENTS
Alternate construction: For n=0,1,2,... write all strings of length n using the first n symbols of the alphabet (""; a; aa,ab,ba,bb; aaa,aab,aac, aba,...), then code / interpret them as "positional" notation of exponents (a=1, b=2, ...) of primes (last digit = least prime), e.g.: acb => [1,3,2] => 5^1 3^3 2^2.
These numbers have the property that, if a prime p divides the number, then all primes less than p also divide it. (But not all such numbers are listed, neither are they listed in increasing order.)
EXAMPLE
The sequence begins: a(1)=1 (empty product); a(2)=2^1;
a(3,...,6)=2^1 3^1, 2^2 3^1, 2^1 3^2, 2^2 3^2;
a(7,...)=2^1 3^1 5^1, 2^2 3^1 5^1, 2^3 3^1 5^1,
________ 2^1 3^2 5^1, 2^2 3^2 5^1, 2^3 3^2 5^1,
________ 2^1 3^3 5^1, 2^2 3^3 5^1, 2^3 3^3 5^1,
________ 2^1 3^1 5^2, 2^2 3^1 5^2, 2^3 3^1 5^2, ...
They correspond to the strings (cf. comment) "" a aa ab ba bb aaa aab aac aba abb abc aca acb acc baa bab bac ...
PROG
(PARI) for( L=0, 3, forvec( v=vector(L, i, [1, L]), print1( prod( j=1, L, prime(j)^v[L-j+1] )", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 31 2010
STATUS
approved