login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178102
2^(absolute difference between prime factors of n-th semiprime) mod (n-th semiprime).
2
1, 2, 1, 8, 4, 4, 16, 6, 1, 20, 25, 26, 4, 10, 10, 12, 1, 13, 9, 43, 44, 16, 61, 52, 56, 16, 62, 16, 22, 22, 64, 70, 24, 44, 80, 28, 59, 30, 72, 1, 92, 31, 97, 106, 34, 106, 36, 4, 136, 110, 64, 40, 40, 9, 42, 1, 133, 134, 46, 81, 64, 146, 151, 152, 121
OFFSET
1,2
COMMENTS
From Robert Israel, Apr 05 2020: (Start)
If A001358(n) = 2*p, then a(n) = (p+1)/2 if p == 3 (mod 4), or (3*p+1)/2 if p == 1 (mod 4).
If A001358(n) = 3*p with p > 3, then a(n) = (3*p+1)/4 if p == 1 (mod 4), or (9*p+1)/4 if p == 3 (mod 4). (End)
LINKS
EXAMPLE
a(1)=1 because the first semiprime is 4=2*2 and 2^(2-2) mod 4 = 1.
a(11)=25 because the 11th semiprime is 33=3*11 and 2^(11-3) mod 33 = 25.
MAPLE
b:= proc(n) option remember;
local k;
if n=1 then 4
else for k from b(n-1)+1 while
isprime(k) or add (i[2], i=ifactors(k)[2])<>2
do od; k
fi
end:
a:= proc(n)
local l;
l:= ifactors (b(n))[2];
if nops (l)=1 then 1
else 2 &^ abs(l[1][1]-l[2][1]) mod b(n)
fi
end:
seq (a(n), n=1..65);
MATHEMATICA
Mod[2^Differences[FactorInteger[#][[All, 1]]], #]&/@Select[Range[300], PrimeOmega[ #] == 2&]/.{}->1//Flatten (* Harvey P. Dale, Dec 25 2018 *)
CROSSREFS
Sequence in context: A308695 A278111 A223550 * A245836 A368386 A135520
KEYWORD
nonn,look
AUTHOR
EXTENSIONS
Edited by Alois P. Heinz, Dec 17 2010
STATUS
approved