login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.
7

%I #36 Aug 07 2022 02:04:56

%S 32,38,45,51,52,56,57,63,69,87,145,209,713,1073,3233,3953,5609,8633,

%T 11009,18209,23393,31313,38009,56153,71273,74513,131753,154433,164009,

%U 189209,205193,233273,245009,321473,328313,356393,363593,431633,471953,497009

%N Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.

%C Theorem: A number m > 145 is a member if and only if it is a product p*(p+8) such that both p and p+8 are primes (A023202).

%C The proof is similar to that of Theorem 1 in the Shevelev link. - _Vladimir Shevelev_, Feb 23 2016

%H Robert Price, <a href="/A178099/b178099.txt">Table of n, a(n) for n = 1..187</a>

%H R. J. Mathar, <a href="http://arxiv.org/abs/1109.0922">Corrigendum to "On the divisibility..."</a>, arxiv:1109.0922 [math.NT], 2011.

%H Vladimir Shevelev, <a href="http://dx.doi.org/10.1142/S179304210700078X">On divisibility of binomial(n-i-1,i-1) by i</a>, Intl. J. of Number Theory, 3, no.1 (2007), 119-139.

%F {k: A178101(k) = 3}.

%p A178099 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: if nops(dvs) = 3 then printf("%d,\n",n); end if; end proc:

%p for n from 1 do A178099(n) end do; # _R. J. Mathar_, May 28 2010

%t Select[Range[4000], Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 3]] (* _Michael De Vlieger_, Feb 17 2016 *)

%o (PARI) isok(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)) == 3; \\ _Michel Marcus_, Feb 17 2016

%o (PARI) isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 3, return (0));); nb == 3;} \\ _Michel Marcus_, Feb 17 2016

%Y Cf. A023202, A138389, A178071, A178098, A178101.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, May 20 2010

%E Definition corrected, 54 and 91 removed by _R. J. Mathar_, May 28 2010

%E a(11)-a(23) from _Michel Marcus_, Feb 17 2016

%E a(24)-a(40) from Shevelev Theorem in Comments by _Robert Price_, May 14 2019