login
A177842
Period 27: repeat 1, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 1, 81, 81, 9, 81, 81.
0
1, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 1, 81, 81, 9, 81, 81, 1, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 1, 81, 81, 9, 81, 81, 1, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 3, 81, 81, 9, 81, 81, 3, 81, 81, 1, 81, 81
OFFSET
0,2
COMMENTS
The generating formula is a(n) = A061040(n+3) - 9*A061039(n+3). This is a member of the family of sequences with A000012(n) = A000290(n+1) -A005563(n+1), with period length 1, and A177499(n) = A061038(n+2) -4*A061037(n+2), with period length 4.
a(n) here has period length 3^3 and the general series of this family has period length k^k.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: ( -1 -81*x -3*x^9 -3*x^3 -81*x^4 -81*x^5 -9*x^6 -81*x^7 -81*x^8 -81*x^10 -3*x^12 -81*x^13 -81*x^14 -9*x^15 -81*x^16 -81*x^17 -3*x^18 -81*x^19 -81*x^20 -x^21 -81*x^22 -81*x^23 -9*x^24 -81*x^25 -81*x^26 -81*x^11 -81*x^2 ) / ( (x-1) *(1+x+x^2) *(1+x^3+x^6) *(1+x^9+x^18) ). - R. J. Mathar, Dec 09 2010
a(n) = a(n+27).
PROG
(PARI) a(n)=3^[0, 4, 4, 1, 4, 4, 2, 4, 4, 1, 4, 4, 1, 4, 4, 2, 4, 4, 1, 4, 4, 0, 4, 4, 2, 4, 4][n%27+1] \\ Charles R Greathouse IV, Jul 17 2016
CROSSREFS
Sequence in context: A206150 A206143 A087410 * A075691 A055390 A186472
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 14 2010
STATUS
approved