login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177545
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, down, down.
2
1, 1, 2, 6, 24, 120, 720, 4929, 38544, 338904, 3309120, 35521200, 415704960, 5271197205, 71977504692, 1053008012790, 16431803844480, 272435676775200, 4782657847248000, 88624515772410633, 1728678866577622920, 35404942557640528620, 759655818204633900000
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.9752820884477652193970997660966130503977714987577677..., c = 1.1721546677937404500752065441275892023818795500231... . - Vaclav Kotesovec, Jan 17 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 3, 6, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 5, 2, 4][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 22 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 6, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 2, 4}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=44,50 of A242784.
Sequence in context: A068201 A189848 A189285 * A177538 A177550 A177536
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 22 2013
STATUS
approved