login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177524
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, down, down.
2
1, 1, 2, 6, 24, 120, 715, 4970, 39480, 352800, 3502800, 38255900, 455795100, 5883052500, 81774966000, 1217871018000, 19346879737625, 326549862671250, 5835951345093750, 110091785625495000, 2186122850020215000, 45580964489553559375, 995625115672520581250
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * d^n * n!, where d = 0.9928637443921790380857377558103269268777241137790934589694993..., c = 1.0369478195304845650491426260146999487076420703190374702807322... . - Vaclav Kotesovec, Aug 29 2014
MAPLE
b:= proc(u, o, t) option remember; `if`(t>5, 0, `if`(u+o=0, 1,
add(b(u-j, o+j-1, `if`(t=1, 1, t+1)), j=1..u)+
add(b(u+j-1, o-j, 2), j=1..o)))
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 21 2013
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[t > 5, 0, If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, If[t == 1, 1, t + 1]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]];
a[n_] := If[n == 0, 1, Sum[b[j - 1, n - j, 1], {j, 1, n}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 20 2022, after Alois P. Heinz *)
CROSSREFS
Columns k=16,30 of A242784.
Sequence in context: A177531 A121987 A324132 * A223905 A374620 A164872
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2010
EXTENSIONS
a(17)-a(22) from Alois P. Heinz, Oct 20 2013
STATUS
approved