login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177317
Number of permutations of n copies of 1..5 with all adjacent differences <= 1 in absolute value.
3
1, 2, 48, 2288, 135040, 8956752, 640160976, 48203722464, 3772321496064, 304100156874800, 25098440923318048, 2111488538062121088, 180477438192133215952, 15633823902235680250592, 1369837117884520736235840, 121216041295339359662340288, 10819157637786569144853012480
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..28 (terms n=1..16 from R. H. Hardin)
Manuel Kauers and Christoph Koutschan, Some D-finite and some Possibly D-finite Sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023, pp. 9-11.
FORMULA
From Manuel Kauers and Christoph Koutschan, Mar 01 2023: (Start)
a(n) = coefficient of x1^n*x2^n*x3^n*x4^n*t^(5*n-1) in (2*t^3*x3(x1*x2+x1*x4*x2+x4*x2+x1*x4)-t^2*x3*(x2*x1-3*x1+x2*x4+x4)-2*t*(x3*x1+x4*x1+x1+x2+x3+x2*x4)+x1+x2+x3+x4+1)/(-t^4*x3*(x1*x2+x1*x4*x2+x4*x2+x1*x4)+t^3*x3*(x2*x1-x1+x2*x4+x4)+t^2*(x3*x1+x4*x1+x1+x2+x3+x2*x4)-t*(x1+x2+x3+x4+1)+1).
3*n^3*(1 + n)*(1 + 3*n)*(2 + 3*n)*(3281160 + 13324928*n + 23607946*n^2 + 23825758*n^3 + 14975281*n^4 + 6000286*n^5 + 1496236*n^6 + 212252*n^7 + 13113*n^8)*a(n) - (1 + n)^2*(14722560 + 163505952*n + 822949992*n^2 + 2464399296*n^3 + 4847819730*n^4 + 6543447222*n^5 + 6186525969*n^6 + 4125650658*n^7 + 1929434771*n^8 + 618883678*n^9 + 129652375*n^10 + 15978026*n^11 + 878571*n^12)*a(n+1) + 2*(2 + n)^2*(20370096 + 207973548*n + 951883014*n^2 + 2588508450*n^3 + 4659341433*n^4 + 5838584798*n^5 + 5211702571*n^6 + 3333874350*n^7 + 1515722000*n^8 + 477646252*n^9 + 99089547*n^10 + 12162378*n^11 + 668763*n^12)*a(n+2) - (2 + n)^2*(3 + n)^4*(10512 + 90060*n + 332910*n^2 + 697266*n^3 + 906481*n^4 + 745834*n^5 + 377636*n^6 + 107348*n^7 + 13113*n^8)*a(n+3) = 0. (End)
CROSSREFS
Row n=5 of A331562.
Sequence in context: A119698 A112103 A367254 * A114714 A186416 A210723
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 06 2010
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
STATUS
approved