login
A176991
Triangle t(n,m) = binomial(n+m,m) - binomial(n-m,m), 1<=m<=n, read by rows.
0
2, 2, 6, 2, 10, 20, 2, 14, 35, 70, 2, 18, 56, 126, 252, 2, 22, 83, 210, 462, 924, 2, 26, 116, 330, 792, 1716, 3432, 2, 30, 155, 494, 1287, 3003, 6435, 12870, 2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620, 2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756
OFFSET
1,1
COMMENTS
Row sums are binomial(2n+1,n+1)-1-A000071(n+1) = A001700(n)-A000045(n+1) = 2, 8, 32, 121, 454, 1703, 6414, 24276, 92323, 352627,....
FORMULA
t(n,m) = A046899(n,m) - A011973(n,m), 0<=m<=n/2.
EXAMPLE
2;
2, 6;
2, 10, 20;
2, 14, 35, 70;
2, 18, 56, 126, 252;
2, 22, 83, 210, 462, 924;
2, 26, 116, 330, 792, 1716, 3432;
2, 30, 155, 494, 1287, 3003, 6435, 12870;
2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620;
2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756;
MATHEMATICA
t[n_, m_] = Binomial[n + (m - 1), (m - 1)] - Binomial[n - (m - 1), (m - 1)];
Table[Table[t[n, m], {m, 2, n + 1}], {n, 1, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 08 2010
STATUS
approved