login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176610
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=0, k=1 and l=1.
0
1, 0, 3, 10, 25, 65, 197, 652, 2203, 7523, 26159, 92663, 332747, 1206641, 4411883, 16252550, 60270497, 224798517, 842706069, 3173330573, 11998214633, 45531318219, 173359346313, 662062569685, 2535444644053, 9734529981735
OFFSET
0,3
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=1).
Conjecture: (n+1)*a(n) +(2-7n)*a(n-1) +(19n-29)*a(n-2) +(110-37n)*a(n-3) +36*(n-4)*a(n-4) +12*(5-n)*a(n-5)=0. - R. J. Mathar, Nov 17 2011
EXAMPLE
a(2)=(1*0+1)+(1*0+1)+1=3. a(3)=2*1*3+2+(0^2+1)+1=10. a(4)=2*1*10+2+2*0*3+2+1=25.
MAPLE
l:=1: : k := 1 : m:=0: d(0):=1:d(1):=m: for n from 1 to 32 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 34); seq(d(n), n=0..32);
CROSSREFS
Sequence in context: A005674 A089100 A089117 * A026965 A130783 A026975
KEYWORD
nonn
AUTHOR
Richard Choulet, Apr 21 2010
STATUS
approved