login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176605
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=0 and l=1.
3
1, 1, 3, 8, 23, 72, 239, 825, 2929, 10624, 39193, 146587, 554535, 2118042, 8156595, 31635298, 123462515, 484483902, 1910465543, 7566438417, 30084771297, 120044573286, 480550302501, 1929362833770, 7767140703837, 31346346634338
OFFSET
0,3
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +8*(-n+3)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 29 2016
a(n) = Sum_{k=0..n}((C(k)*Sum_{j=0..(n-k)/2}(binomial(k+1,j)*binomial(n-k-j-1,n-k-2*j)))), where C(n) is Catalan numbers (A000108). - Vladimir Kruchinin, Apr 15 2016
EXAMPLE
a(2)=(1*1+0)+(1*1+0)+1=3. a(3)=1*3+1^1+3*1+1=8. a(4)=2*1*8+2*1*3+1=23.
MAPLE
l:=1: : k := 0 : m:=1:d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);
MATHEMATICA
Table[Sum[(Binomial[2 k, k] Sum[Binomial[k + 1, j] Binomial[n - k - j - 1, n - k - 2 j], {j, 0, (n - k)/2}])/(k + 1), {k, 0, n}], {n, 0, 25}] (* Michael De Vlieger, Apr 15 2016 *)
PROG
(Maxima)
a(n):=sum((binomial(2*k, k)*sum(binomial(k+1, j)*binomial(n-k-j-1, n-k-2*j), j, 0, (n-k)/2))/(k+1), k, 0, n); /* Vladimir Kruchinin, Apr 15 2016 */
CROSSREFS
Cf. A176604.
Sequence in context: A127385 A152880 A259441 * A080410 A230952 A148777
KEYWORD
nonn
AUTHOR
Richard Choulet, Apr 21 2010
STATUS
approved