OFFSET
1,1
COMMENTS
Subsequence of A176223.
p, f(p) = 2*p + 13, q = f(f(p)) = 4*p + 39 to be primes.
Necessarily for such primes p > 5, the LSD (least significant digit) is either 3 or 7, since an LSD of 1 gives the LSD of f(p) equal to 5 and an LSD of 9 gives the LSD of f(f(p)) equal to 5.
LINKS
Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
EXAMPLE
f(2) = 17 = prime(7), f(17) = 47 = prime(15), 2 is first term.
f(5) = 23 = prime(9), f(23) = 59 = prime(17), 5 is 2nd term.
Note first resulting palindromic prime: f(3323) = 6659 = prime(858), q = 13331 = prime(1583) = palprime(29).
MATHEMATICA
Select[Prime@ Range[10^3], AllTrue[NestList[2 # + 13 &, #, 2], PrimeQ] &] (* Michael De Vlieger, Mar 14 2020 *)
PROG
(PARI) isok(n) = isprime(n) && isprime(p=2*n+13) && isprime(2*p+13) \\ Michel Marcus, Jun 28 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 13 2010
EXTENSIONS
More terms from Michel Marcus, Jun 28 2013
STATUS
approved