login
A175615
Decimal expansion of sinh(Pi)/(4*Pi).
14
9, 1, 9, 0, 1, 9, 4, 7, 7, 5, 9, 3, 7, 4, 4, 4, 3, 0, 1, 7, 3, 9, 2, 4, 3, 7, 3, 0, 0, 7, 0, 6, 5, 1, 6, 6, 6, 2, 6, 7, 8, 9, 0, 8, 6, 7, 0, 6, 9, 0, 7, 5, 6, 9, 3, 6, 9, 5, 0, 0, 8, 9, 8, 3, 8, 9, 3, 6, 1, 8, 3, 1, 0, 2, 7, 7, 5, 5, 5, 1, 8, 3, 0, 3, 3, 1, 3, 9, 8, 1, 6, 4, 7, 5, 8, 0, 7, 5, 5, 8, 8, 2, 1, 8, 8
OFFSET
0,1
FORMULA
Equals product_{n >= 2} (1-n^(-4)).
Equals A156648/4.
Equals exp(Sum_{j>=1} (1 - zeta(4*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(2*Gamma(2-i)*Gamma(2+i)). - Amiram Eldar, May 28 2021
EXAMPLE
0.91901947759...
MAPLE
sinh(Pi)/4/Pi; evalf(%) ;
MATHEMATICA
RealDigits[Sinh[Pi]/(4Pi), 10, 120][[1]] (* Harvey P. Dale, Feb 11 2023 *)
PROG
(PARI) exp(suminf(j=1, (1 - zeta(4*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 26 2010
STATUS
approved