login
A175372
Number of integer pairs (x,y) satisfying x^4 + y^4 = n.
2
1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
A 4th-power variant of A004018 and A175362.
a(n) is nonzero when n appears in A004831. a(n) > 8 when n appears in A003824. - Mason Korb, Oct 06 2018
FORMULA
G.f.: (1 + 2*Sum_{j>=1} x^(j^4))^2.
MAPLE
seq(coeff(series((1+2*add(x^(j^4), j=1..n))^2, x, n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
CoefficientList[Series[(1 + 2*Sum[x^(j^4), {j, 1, 100}])^2, {x, 0, 120}], x] (* G. C. Greubel, Oct 06 2018 *)
PROG
(PARI) x='x+O('x^120); Vec((1+2*sum(j=1, 50, x^(j^4)))^2) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=120; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*(&+[x^(j^4): j in [1..50]]))^2)); // G. C. Greubel, Oct 06 2018
CROSSREFS
Cf. A003824, A004831 (where a(n) is nonzero).
Sequence in context: A340667 A344407 A197243 * A069191 A175362 A189973
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 24 2010
STATUS
approved