login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175137
Irregular triangle T(n,k) read by rows: number of orbits of size 2^k on Dyck n-paths.
0
1, 2, 3, 1, 6, 2, 1, 12, 7, 4, 26, 23, 11, 2, 59, 71, 41, 8, 138, 224, 151, 30, 332, 709, 550, 114, 814, 2253, 1993, 406, 16, 2028, 7189, 7211, 1564, 64, 5118, 23045, 26221, 6010, 240, 13054, 74213, 95583, 23062, 912, 33598, 239979, 349145, 88530, 3504, 87143
OFFSET
1,2
LINKS
EXAMPLE
Triangle starts at row n=1
1;
2;
3,1;
6,2,1;
12,7,4;
26,23,11,2;
59,71,41,8;
138,224,151,30;
MAPLE
Fx := proc(k) local ak ; ak := (2*x)^(2^k+1) ; (1-ak-(1-4*x+(ak*x*(2-ak))/(1-x))^(1/2))/(2*x-ak) ; end proc: ff := [] : for k from 0 to 5 do ff := [op(ff), taylor(Fx(k), x=0, 18)] ; end do : F := proc(n, k) global ff ; coeftayl(op(k+1, ff), x=0, n) ; end proc: T := proc(n, k) global ff ; if k = 0 then F(n, 0) ; else (F(n, k)-F(n, k-1))/2^k ; end if; end proc: for n from 1 to 17 do for k from 0 to 5 do if T(n, k) <> 0 then printf("%d, ", T(n, k)) ; fi; end do ; printf("\n") ; end do ;
CROSSREFS
Cf. A127384 (row sums).
Sequence in context: A363266 A083855 A062565 * A156344 A218796 A119440
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Feb 21 2010
STATUS
approved