login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A174815
Decimal expansion of sqrt(2)*e^(gamma), where gamma is Euler's constant.
1
2, 5, 1, 8, 8, 1, 6, 7, 6, 9, 0, 9, 0, 3, 8, 0, 0, 7, 4, 4, 9, 5, 9, 3, 4, 5, 3, 5, 4, 1, 7, 7, 8, 0, 3, 7, 8, 8, 4, 3, 3, 3, 6, 0, 2, 1, 3, 6, 1, 3, 3, 2, 6, 4, 8, 8, 0, 4, 5, 9, 8, 9, 1, 5, 5, 4, 9, 7, 2, 1, 4, 4, 3, 1, 4, 8, 9, 6, 6, 6, 5, 2, 3, 0, 3, 8, 3, 2, 0, 9, 5, 2, 4, 4, 4, 7, 5, 6, 5, 6, 8, 7, 9, 9, 2, 0
OFFSET
1,1
COMMENTS
This constant appears when comparing various divergent series after n iterations.
LINKS
Eric Weisstein's World of Mathematics, Mersenne Prime
FORMULA
lim_{n->oo} e^sum(1/k, k=1..n) / sqrt(1+2+3+...+n) = sqrt(2)*e^gamma.
EXAMPLE
sqrt(2)*e^(gamma) = 2.5188167690903800744959345354177803788433360213612...
MAPLE
evalf(sqrt(2)*exp(gamma), 99);
MATHEMATICA
RealDigits[Sqrt[2]*Exp[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 06 2018 *)
PROG
(PARI) sqrt(2)*exp(Euler) \\ Charles R Greathouse IV, Aug 01 2011
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2)* Exp(EulerGamma(R)); // G. C. Greubel, Sep 06 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ryan Gerard (rsgerard(AT)gmail.com), Mar 29 2010
EXTENSIONS
Comments containing infinities removed by Jonathan Sondow, Aug 01 2011
STATUS
approved