Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 12 2015 11:00:23
%S 0,0,0,0,0,0,0,12,60,180,432,900,1692,2940,4800,7452,11100,15972,
%T 22320,30420,40572,53100,68352,86700,108540,134292,164400,199332,
%U 239580,285660,338112,397500,464412,539460,623280,716532,819900,934092,1059840
%N Number of ways to place 4 nonattacking amazons (superqueens) on a 4 X n board.
%C An amazon (superqueen) moves like a queen and a knight
%H Vincenzo Librandi, <a href="/A174642/b174642.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="http://oprisch.net/SuperQueens/SuperQueens.html">The Oprisch Family Web Site</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%F G.f.: -12*x^8*(x^3+1)/(x-1)^5.
%F Explicit formula: a(n) = (n-7)(n^3-21n^2+158n-420), n>=7.
%t CoefficientList[Series[- 12 x^7 (x^3 + 1) / (x - 1)^5, {x, 0, 50}], x] (* _Vincenzo Librandi_, May 30 2013 *)
%Y Cf. A173214, A172201, A172200, A051223, A051224, A036464.
%K nonn,easy
%O 1,8
%A _Vaclav Kotesovec_, Mar 25 2010
%E More terms from _Vincenzo Librandi_, May 30 2013