%I #17 Sep 24 2023 10:20:16
%S 1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,0,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,0,1,
%T 1,1,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,0,0,1,1,0,1,1,1,0,1,
%U 1,0,0,1,1,1,0,1,1,1,1,0,0,1,1,0,0,1,1,0,1,1,1,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1
%N T(n,k) = 1 if the sum of +-k..+-n with arbitrary signs never equals zero, = 0 otherwise (lower triangle)
%H R. H. Hardin, <a href="/A174600/b174600.txt">Table of n, a(n) for n=1..4950</a>
%e Triangle begins
%e 1;
%e 1, 1;
%e 0, 1, 1;
%e 0, 1, 1, 1;
%e 1, 0, 1, 1, 1;
%e 1, 0, 0, 1, 1, 1;
%e 0, 1, 1, 0, 1, 1, 1;
%e 0, 1, 1, 0, 0, 1, 1, 1;
%e 1, 0, 0, 1, 1, 0, 1, 1, 1;
%e 1, 0, 0, 1, 1, 1, 0, 1, 1, 1; ...
%t t[n_, k_] := If[Mod[Floor[(n+1)/2], 2] != Mod[Floor[k/2], 2], 1, If[Mod[n-k, 2] == 0, If[k > ((n-k)/2)^2, 1, 0], 0]]; Flatten[Table[t[n, k], {n, 1, 15}, {k, 1, n}]][[;; 108]] (* _Jean-François Alcover_, Jul 11 2011, after awk program *)
%o (AWK)
%o { for(n=1; n<10; n++)
%o for(k=1; k<=n; k++)
%o print ++i, T(n,k);
%o }
%o function T(n,k) {
%o if ( int((n+1)/2)%2 != int(k/2)%2 ) return 1;
%o else if ( (n-k)%2 == 0 ) {
%o if ( k > ((n-k)/2)^2 ) return 1;
%o else return 0;
%o }
%o else return 0;
%o }
%o (PARI)
%o T(n,k)=
%o {
%o if ( ((n+1)\2)%2 != (k\2)%2,
%o return(1);
%o , /* else */
%o if ( (n-k)%2 == 0,
%o if ( k > ((n-k)/2)^2, return(1), return(0) );
%o , /* else */
%o return(0);
%o );
%o );
%o }
%o { for(n=1, 10, /* show triangle */
%o for(k=1,n,
%o print1(T(n,k),", ");
%o );
%o print();
%o ); }
%Y Related to A063865.
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Mar 23 2010, with formula and reference from Franklin T. Adams-Watters and _Olivier Gérard_, on the Sequence Fans Mailing list.