login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174474
a(n) = (2*n^2 - 2*n - 3)/8 + 3*(-1)^n*(1-2*n)/8.
3
0, 0, -1, 3, 0, 8, 3, 15, 8, 24, 15, 35, 24, 48, 35, 63, 48, 80, 63, 99, 80, 120, 99, 143, 120, 168, 143, 195, 168, 224, 195, 255, 224, 288, 255, 323, 288, 360, 323, 399, 360, 440, 399, 483, 440, 528, 483, 575, 528, 624, 575
OFFSET
0,4
COMMENTS
First differences are (-1)^n*A022998(n).
FORMULA
Bisections: a(2n) = A067998(n). a(2n+1) = A005563(n).
a(2n) + a(2n+1) = A001105(n).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1 - 4*x + x^2) / ( (1+x)^2*(x-1)^3 ).
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 0, -1, 3, 0}, 60] (* Harvey P. Dale, Jun 01 2015 *)
PROG
(Magma) [(2*n^2-2*n-3)/8+3*(-1)^n*(1-2*n)/8: n in [0..60]]; // Vincenzo Librandi, Aug 04 2011
CROSSREFS
Sequence in context: A372827 A180661 A363053 * A317300 A007391 A247668
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Nov 28 2010
STATUS
approved