login
A174297
First column of A174295.
6
1, -1, -1, 0, -1, 1, -3, 6, -15, 36, -91, 232, -603, 1585, -4213, 11298, -30537, 83097, -227475, 625992, -1730787, 4805595, -13393689, 37458330, -105089229, 295673994, -834086421, 2358641376, -6684761125, 18985057351, -54022715451
OFFSET
0,7
COMMENTS
First 6 terms as in Mobius function A008683. Signed version of A099323 with an additional leading 1.
LINKS
FORMULA
a(n) = -(-3)^(n-3/2)*hypergeometric2F1([3/2, n-1],[2],4) for n > 2. - Mark van Hoeij, Jul 02 2010
a(n) = (-1)^n if n < 2 otherwise Sum_{j=0..n-2} (-1)^(j-1)*binomial(n-2, j)*Catalan(j). - G. C. Greubel, Nov 25 2021
MATHEMATICA
a[n_]:= a[n]= If[n<2, (-1)^n, Sum[(-1)^(j+1)*Binomial[n-2, j]*CatalanNumber[j], {j, 0, n-2}]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Nov 25 2021 *)
PROG
(Magma)
a:= func< n | n lt 2 select (-1)^n else (&+[(-1)^(k+1)*Binomial(n-2, k)*Catalan(k): k in [0..n-2]]) >;
[a(n): n in [0..30]]; // G. C. Greubel, Nov 25 2021
(Sage) [1, -1]+[sum( (-1)^(j+1)*binomial(n-2, j)*catalan_number(j) for j in (0..n-2) ) for n in (2..40)] # G. C. Greubel, Nov 25 2021
CROSSREFS
Sequence in context: A017924 A052827 A033192 * A005043 A099323 A342912
KEYWORD
sign
AUTHOR
Mats Granvik, Mar 15 2010
STATUS
approved