login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174114
Even central polygonal numbers (A193868) divided by 2.
9
1, 2, 8, 11, 23, 28, 46, 53, 77, 86, 116, 127, 163, 176, 218, 233, 281, 298, 352, 371, 431, 452, 518, 541, 613, 638, 716, 743, 827, 856, 946, 977, 1073, 1106, 1208, 1243, 1351, 1388, 1502, 1541, 1661, 1702, 1828, 1871, 2003, 2048, 2186, 2233, 2377, 2426, 2576
OFFSET
1,2
COMMENTS
Central terms of A170950, seen as a triangle of rows with an odd number of terms.
Equivalently, numbers of the form m*(4*m+3)+1, where m = 0, -1, 1, -2, 2, -3, 3, ... . - Bruno Berselli, Jan 05 2016
FORMULA
a(n+3) - a(n+2) - a(n+1) + a(n) = A010696(n+1).
a(n) = A170950(A002061(n)).
a(n) = A193868(n)/2. - Omar E. Pol, Aug 16 2011
G.f.: -x*(1+x+4*x^2+x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 18 2011
E.g.f.: ((2 + x + 2*x^2)*cosh(x) + (1 - x + 2*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Nov 16 2024
MATHEMATICA
Select[Table[(n (n + 1)/2 + 1)/2, {n, 600}], IntegerQ] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2012 *)
(Select[PolygonalNumber@ Range@ 100, OddQ] + 1 )/2 (* Version 10.4, or *)
Rest@ CoefficientList[Series[-x (1 + x + 4 x^2 + x^3 + x^4)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jun 30 2016 *)
PROG
(PARI) a(n)=(2*n-1)*(2*n-1-(-1)^n)\4+1 \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Cf. A033951: numbers of the form m*(4*m+3)+1 for nonnegative m.
Sequence in context: A362869 A234924 A336771 * A197540 A089118 A146480
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Mar 08 2010
EXTENSIONS
New name from Omar E. Pol, Aug 16 2011
STATUS
approved