login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174021
Number of symmetry classes of reduced 3x3 magilatin squares with magic sum n.
4
1, 1, 2, 3, 6, 8, 16, 15, 25, 30, 41, 43, 66, 68, 92, 99, 129, 136, 180, 180, 231, 245, 297, 304, 385, 388, 469, 482, 575, 588, 706, 704, 831, 858, 987, 996, 1171, 1175, 1350, 1370, 1561, 1581, 1806, 1804, 2047, 2081, 2323, 2335, 2641, 2649, 2951, 2979, 3302
OFFSET
3,3
COMMENTS
A magilatin square has equal row and column sums and no number repeated in any row or column. It is reduced if the least value in it is 0. The symmetries are row and column permutations and diagonal flip.
a(n) is given by a quasipolynomial of degree 4 and period 840.
REFERENCES
Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.
LINKS
Matthias Beck and Thomas Zaslavsky, Six Little Squares and How Their Numbers Grow , J. Int. Seq. 13 (2010), 10.6.2.
Matthias Beck and Thomas Zaslavsky, "Six Little Squares and How their Numbers Grow" Web Site: Maple worksheets and supporting documentation.
Index entries for linear recurrences with constant coefficients, signature (-2, -3, -3, -2, 0, 3, 6, 9, 10, 9, 5, 0, -6, -11, -14, -14, -11, -6, 0, 5, 9, 10, 9, 6, 3, 0, -2, -3, -3, -2, -1).
CROSSREFS
Cf. A173549 (all magilatin squares), A173730 (symmetry types), A174020 (reduced squares), A174019 (reduced symmetry types by largest value).
Sequence in context: A300671 A268645 A047001 * A267007 A091070 A133586
KEYWORD
nonn
AUTHOR
Thomas Zaslavsky, Mar 05 2010
EXTENSIONS
"Distinct" values (incorrect) deleted by Thomas Zaslavsky, Apr 24 2010
STATUS
approved